Apatinib mesylatefeatured
WARNING: This product is for research use only, not for human or veterinary use.
MedKoo CAT#:200135
CAS#:1218779-75-9 (mesylate)
Description:Apatinib, also known as Rivoceranib, is an orally bioavailable, small-molecule receptor tyrosine kinase inhibitor with potential antiangiogenic and antineoplastic activities. The free-base form is also known as Rivoceranib. Apatinib selectively binds to and inhibits vascular endothelial growth factor receptor 2, which may inhibit VEGF-stimulated endothelial cell migration and proliferation and decrease tumor microvessel density. In addition, this agent mildly inhibits c-Kit and c-SRC tyrosine kinases.
Price and Availability
Apatinib mesylate, purity > 98%, is in stock. The same day shipping out after order is received.
Chemical Structure
Theoretical Analysis
MedKoo Cat#: 200135Name: Apatinib mesylateCAS#: 1218779-75-9 (mesylate)Chemical Formula: C25H27N5O4S Exact Mass: Molecular Weight: 493.58Elemental Analysis: C, 60.83; H, 5.51; N, 14.19; O, 12.97; S, 6.50
Related CAS #:1218779-75-9 (mesylate)811803-05-1 (free base)
Synonym:YN-968D1; YN 968D1; YN968D1; Rivoceranib; Apatinib; Apatinib mesylate.
IUPAC/Chemical Name:N-(4-(1-cyanocyclopentyl)phenyl)-2-((4-methylpyridin-3-yl)amino)nicotinamide methanesulfonate
InChi Key:BDGPIQYIFFSTGI-UHFFFAOYSA-N
InChi Code:InChI=1S/C24H23N5O.CH4O3S/c1-17-10-14-26-15-21(17)29-22-20(5-4-13-27-22)23(30)28-19-8-6-18(7-9-19)24(16-25)11-2-3-12-24;1-5(2,3)4/h4-10,13-15H,2-3,11-12H2,1H3,(H,27,29)(H,28,30);1H3,(H,2,3,4)
SMILES Code:O=C(NC1=CC=C(C2(C#N)CCCC2)C=C1)C3=C(NC4=C(C)C=CN=C4)N=CC=C3.CS(=O)(O)=O
Technical Data
Additional Information
Related:1218779-75-9 (Apatinib mesylate salt) 811803-05-1 (Apatinib free base).
Apatinib, also known as YN968D1, is a tyrosine kinase inhibitor that selectively inhibits the vascular endothelial growth factor receptor-2 (VEGFR2, also known as KDR). It is an orally bioavailable, small molecule agent which is thought to inhibit angiogenesis in cancer cells; specifically apatinib inhibits VEGF-mediated endothelial cell migration and proliferation thus blocking new blood vessel formation in tumor tissue. This agent also mildly inhibits c-Kit and c-SRC tyrosine kinases. History of Apatinib: Apatinib was first synthesized by Advenchen Laboratories in California, USA and is being developed by Jiangsu Hengrui Medicine (China), LSK BioPartners (US) and Bukwang Pharmaceutical Company (Korea). It is an investigational cancer drug currently undergoing clinical trials as a potential targeted treatment for metastatic gastric carcinoma, metastatic breast cancer and advanced hepatocellular carcinoma. (source: http://en.wikipedia.org/wiki/Apatinib). Development status of Apatinib: There is a Phase II/III study recruiting patients in China to determine whether apatinib can improve progression free survival compared with placebo in patients with metastatic gastric carcinoma who have failed two lines of chemotherapy (September, 2009). As of November, 2010, two additional Phase 2 clinical studies have been initiated for apatinib in metastatic triple-negative breast cancer patients and advanced hepatocellular carcinoma. On March 7, 2011, Bukwang announced that it filed an IND to the Korean FDA to begin Human clinical studies of Apatinib in Phase 2. (source: http://en.wikipedia.org/wiki/Apatinib).
References
1: Sadurní A, Gilmour R. Stereocontrolled Synthesis of 2-Fluorinated C-Glycosides. European J Org Chem. 2018 Aug 1;2018(27-28):3684-3687. doi: 10.1002/ejoc.201800618. Epub 2018 Jun 7. PubMed PMID: 30147438; PubMed Central PMCID: PMC6099233.
2: Ishihara H, Anai M, Seino H, Kitazawa T, Ohashi H, Ai M, Inoue M, Fujishiro M, Inazawa T, Kuroda H, Yamada M. Rationale and Design of the STOP-OB Study for Evaluating the Effects of Tofogliflozin and Glimepiride on Fat Deposition in Type 2 Diabetes Patients Treated with Metformin/DPP-4 Inhibitor Dual Therapy. Diabetes Ther. 2018 Aug 25. doi: 10.1007/s13300-018-0491-4. [Epub ahead of print] PubMed PMID: 30145651.
3: Ikeda S, Takano Y, Schwab D, Portron A, Kasahara-Ito N, Saito T, Iida S. Effect of Renal Impairment on the Pharmacokinetics and Pharmacodynamics of Tofogliflozin (A SELECTIVE SGLT2 Inhibitor) in Patients with Type 2 Diabetes Mellitus. Drug Res (Stuttg). 2018 Aug 13. doi: 10.1055/a-0662-0209. [Epub ahead of print] PubMed PMID: 30103216.
4: Sakaeda T, Kobuchi S, Yoshioka R, Haruna M, Takahata N, Ito Y, Sugano A, Fukuzawa K, Hayase T, Hayakawa T, Nakayama H, Takaoka Y, Tohkin M. Susceptibility to serious skin and subcutaneous tissue disorders and skin tissue distribution of sodium-dependent glucose co-transporter type 2 (SGLT2) inhibitors. Int J Med Sci. 2018 Jun 13;15(9):937-943. doi: 10.7150/ijms.22224. eCollection 2018. PubMed PMID: 30008607; PubMed Central PMCID: PMC6036094.
5: Kusunoki M, Natsume Y, Miyata T, Tsutsumi K, Oshida Y. Effects of ConcomitantAdministration of a Dipeptidyl Peptidase-4 Inhibitor in Japanese Patients with Type 2 Diabetes Showing Relatively Good Glycemic Control Under Treatment with a Sodium Glucose Co-Transporter 2 Inhibitor. Drug Res (Stuttg). 2018 Jul 2. doi: 10.1055/a-0585-0145. [Epub ahead of print] PubMed PMID: 29966149.
6: Bekki M, Tahara N, Tahara A, Igata S, Honda A, Sugiyama Y, Nakamura T, Sun J,Kumashiro Y, Matsui T, Fukumoto Y, Yamagishi S-I. Switching dipeptidyl peptidase-4 inhibitors to tofogliflozin, a selective inhibitor of sodium-glucosecotransporter 2 improves arterial stiffness evaluated by cardio-ankle vascular index in patients with type 2 diabetes: a pilot study. Curr Vasc Pharmacol. 2018May 15. doi: 10.2174/1570161116666180515154555. [Epub ahead of print] PubMed PMID: 29766812.
7: Ouchi M, Oba K, Suganami H, Yoshida A, Fujita T, Suzuki T, Yasutake M, Kaku K. This is in reply to the Letter by Kahathuduwa et al. titled "Unaccounted for regression to the mean renders conclusion of article titled "Uric acid lowering in relation to HbA1c reductions with the SGLT2 inhibitor Tofogliflozin" unsubstantiated". Diabetes Obes Metab. 2018 Aug;20(8):2041-2042. doi: 10.1111/dom.13347. Epub 2018 Jun 5. PubMed PMID: 29749099.
8: Kahathuduwa CN, Thomas DM, Siu C, Allison DB. Unaccounted for regression to the mean renders conclusion of article titled "Uric acid lowering in relation toHbA1c reductions with the SGLT2 inhibitor tofogliflozin" unsubstantiated. Diabetes Obes Metab. 2018 Aug;20(8):2039-2040. doi: 10.1111/dom.13323. Epub 2018May 3. PubMed PMID: 29660244; PubMed Central PMCID: PMC6043394.
9: Kosiborod M, Lam CSP, Kohsaka S, Kim DJ, Karasik A, Shaw J, Tangri N, Goh SY,Thuresson M, Chen H, Surmont F, Hammar N, Fenici P; CVD-REAL Investigators and Study Group. Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study. J Am Coll Cardiol. 2018 Jun 12;71(23):2628-2639. doi: 10.1016/j.jacc.2018.03.009. Epub 2018 Mar 11. PubMed PMID: 29540325.
10: Ito S, Hosaka T, Yano W, Itou T, Yasumura M, Shimizu Y, Kobayashi H, Nakagawa T, Inoue K, Tanabe S, Kondo T, Ishida H. Metabolic effects of Tofogliflozin are efficiently enhanced with appropriate dietary carbohydrate ratio and are distinct from carbohydrate restriction. Physiol Rep. 2018 Mar;6(5). doi: 10.14814/phy2.13642. PubMed PMID: 29520981; PubMed Central PMCID: PMC5843757.
11: Kamei S, Iwamoto M, Kameyama M, Shimoda M, Kinoshita T, Obata A, Kimura T, Hirukawa H, Tatsumi F, Kohara K, Nakanishi S, Mune T, Kaku K, Kaneto H. Effect of Tofogliflozin on Body Composition and Glycemic Control in Japanese Subjects withType 2 Diabetes Mellitus. J Diabetes Res. 2018 Jan 8;2018:6470137. doi: 10.1155/2018/6470137. eCollection 2018. PubMed PMID: 29507863; PubMed Central PMCID: PMC5817268.
12: Horikawa Y, Enya M, Komagata M, Hashimoto KI, Kagami M, Fukami M, Takeda J. Effectiveness of Sodium-Glucose Cotransporter-2 Inhibitor as an Add-on Drug to GLP-1 Receptor Agonists for Glycemic Control of a Patient with Prader-Willi Syndrome: A Case Report. Diabetes Ther. 2018 Feb;9(1):421-426. doi: 10.1007/s13300-018-0369-5. Epub 2018 Jan 15. PubMed PMID: 29335890; PubMed Central PMCID: PMC5801255.
13: Terauchi Y, Tamura M, Senda M, Gunji R, Kaku K. Long-term safety and efficacy of tofogliflozin as add-on to insulin in patients with type 2 diabetes: Results from a 52-week, multicentre, randomized, double-blind, open-label extension, Phase 4 study in Japan (J-STEP/INS). Diabetes Obes Metab. 2018 May;20(5):1176-1185. doi: 10.1111/dom.13213. Epub 2018 Feb 11. PubMed PMID: 29316236; PubMed Central PMCID: PMC5947124.
14: Matsuba R, Matsuba I, Shimokawa M, Nagai Y, Tanaka Y. Tofogliflozin decreases body fat mass and improves peripheral insulin resistance. Diabetes Obes Metab. 2018 May;20(5):1311-1315. doi: 10.1111/dom.13211. Epub 2018 Feb 4. PubMed PMID: 29316197; PubMed Central PMCID: PMC5947308.
15: Ouchi M, Oba K, Kaku K, Suganami H, Yoshida A, Fukunaka Y, Jutabha P, MoritaA, Otani N, Hayashi K, Fujita T, Suzuki T, Yasutake M, Anzai N. Uric acid lowering in relation to HbA1c reductions with the SGLT2 inhibitor tofogliflozin.Diabetes Obes Metab. 2018 Apr;20(4):1061-1065. doi: 10.1111/dom.13170. Epub 2018Jan 8. PubMed PMID: 29171930; PubMed Central PMCID: PMC5887894.
16: Cai X, Yang W, Gao X, Chen Y, Zhou L, Zhang S, Han X, Ji L. The Association Between the Dosage of SGLT2 Inhibitor and Weight Reduction in Type 2 Diabetes Patients: A Meta-Analysis. Obesity (Silver Spring). 2018 Jan;26(1):70-80. doi: 10.1002/oby.22066. Epub 2017 Nov 22. PubMed PMID: 29165885.
17: Tobe K, Suganami H, Kaku K. Sodium-glucose cotransporter 2 inhibitor, tofogliflozin, shows better improvements of blood glucose and insulin secretion in patients with high insulin levels at baseline. J Diabetes Investig. 2018 Jul;9(4):862-869. doi: 10.1111/jdi.12761. Epub 2017 Nov 13. PubMed PMID: 29032638; PubMed Central PMCID: PMC6031493.
18: Obara K, Shirakami Y, Maruta A, Ideta T, Miyazaki T, Kochi T, Sakai H, Tanaka T, Seishima M, Shimizu M. Preventive effects of the sodium glucose cotransporter2 inhibitor tofogliflozin on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic mice. Oncotarget. 2017 Apr 6;8(35):58353-58363. doi: 10.18632/oncotarget.16874. eCollection 2017 Aug 29. PubMed PMID: 28938561; PubMed Central PMCID: PMC5601657.
19: Sawada Y, Izumida Y, Takeuchi Y, Aita Y, Wada N, Li E, Murayama Y, Piao X, Shikama A, Masuda Y, Nishi-Tatsumi M, Kubota M, Sekiya M, Matsuzaka T, Nakagawa Y, Sugano Y, Iwasaki H, Kobayashi K, Yatoh S, Suzuki H, Yagyu H, Kawakami Y, Kadowaki T, Shimano H, Yahagi N. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem Biophys Res Commun. 2017 Nov 4;493(1):40-45. doi: 10.1016/j.bbrc.2017.09.081. Epub 2017 Sep 18. PubMed PMID: 28928093.
20: Katakami N, Mita T, Yoshii H, Shiraiwa T, Yasuda T, Okada Y, Umayahara Y, Kaneto H, Osonoi T, Yamamoto T, Kuribayashi N, Maeda K, Yokoyama H, Kosugi K, Ohtoshi K, Hayashi I, Sumitani S, Tsugawa M, Ohashi M, Taki H, Nakamura T, Kawashima S, Sato Y, Watada H, Shimomura I; UTOPIA study investigators. Rationale, Design, and Baseline Characteristics of the Utopia Trial for Preventing Diabetic Atherosclerosis Using an SGLT2 Inhibitor: A Prospective, Randomized, Open-Label, Parallel-Group Comparative Study. Diabetes Ther. 2017 Oct;8(5):999-1013. doi: 10.1007/s13300-017-0292-1. Epub 2017 Sep 1. PubMed PMID:28864997; PubMed Central PMCID: PMC5630549.