A83-01featured
WARNING: This product is for research use only, not for human or veterinary use.
MedKoo CAT#:401002
CAS#:909910-43-6
Description:A-83-01 is an ALK inhibibitor. It was found that A-83-01 inhibited the transcriptional activity induced by TGF-beta type I receptor ALK-5 and that by activin type IB receptor ALK-4 and nodal type I receptor ALK-7, the kinase domains of which are structurally highly related to those of ALK-5. A-83-01 was found to be more potent in the inhibition of ALK5 than a previously described ALK-5 inhibitor, SB-431542, and also to prevent phosphorylation of Smad2/3 and the growth inhibition induced by TGF-beta. A-83-01 inhibited the epithelial-to-mesenchymal transition induced by TGF-beta, suggesting that A-83-01 and related molecules may be useful for preventing the progression of advanced cancers.
Price and Availability
A83-01, purity > 98%, is in stock. Current shipping out time is about 2 weeks after order is received. CoA, QC data and MSDS documents are available in one week after order is received.
Chemical Structure
Theoretical Analysis
MedKoo Cat#: 401002Name: A83-01CAS#: 909910-43-6Chemical Formula: C25H19N5SExact Mass: 421.13612Molecular Weight: 421.52Elemental Analysis: C, 71.23; H, 4.54; N, 16.61; S, 7.61
Synonym:A8301; A 8301; A-8301
IUPAC/Chemical Name:3-(6-methylpyridin-2-yl)-N-phenyl-4-(quinolin-4-yl)-1H-pyrazole-1-carbothioamide
InChi Key:HIJMSZGHKQPPJS-UHFFFAOYSA-N
InChi Code:InChI=1S/C25H19N5S/c1-17-8-7-13-23(27-17)24-21(19-14-15-26-22-12-6-5-11-20(19)22)16-30(29-24)25(31)28-18-9-3-2-4-10-18/h2-16H,1H3,(H,28,31)
SMILES Code:S=C(N1N=C(C2=NC(C)=CC=C2)C(C3=CC=NC4=CC=CC=C34)=C1)NC5=CC=CC=C5
Technical Data
Additional Information
References
1: Spinato S, Galindo-Moreno P, Zaffe D, BernardelloF, Soardi CM. Is socket healing conditioned by buccal plate thickness? Aclinical and histologic study 4 months after mineralized human boneallografting. Clin Oral Implants Res. 2012 Nov 21. doi:10.1111/clr.12073. [Epub ahead of print] PubMed PMID: 23167308.
2: Chen WP, Wu SM. Small molecule regulators of postnatal Nkx2.5cardiomyoblast proliferation and differentiation. J Cell Mol Med. 2012May;16(5):961-5. doi: 10.1111/j.1582-4934.2011.01513.x. PubMed PMID:22212626; PubMed Central PMCID: PMC3325363.
3: Shimada H, Hashimoto Y, Nakada A, Shigeno K, Nakamura T. Acceleratedgeneration of human induced pluripotent stem cells with retroviraltransduction and chemical inhibitors under physiological hypoxia.Biochem Biophys Res Commun. 2012 Jan 13;417(2):659-64. doi:10.1016/j.bbrc.2011.11.111. Epub 2011 Dec 8. PubMed PMID: 22172948.
4: Vogt J, Traynor R, Sapkota GP. The specificities of small moleculeinhibitors of the TGFß and BMP pathways. Cell Signal. 2011Nov;23(11):1831-42. doi: 10.1016/j.cellsig.2011.06.019. Epub 2011 Jun29. PubMed PMID: 21740966.
5: Yamamura S, Matsumura N, Mandai M, Huang Z, Oura T, Baba T, HamanishiJ, Yamaguchi K, Kang HS, Okamoto T, Abiko K, Mori S, Murphy SK, KonishiI. The activated transforming growth factor-beta signaling pathway inperitoneal metastases is a potential therapeutic target in ovariancancer. Int J Cancer. 2012 Jan 1;130(1):20-8. doi: 10.1002/ijc.25961.Epub 2011 Apr 18. PubMed PMID: 21503873.
6: Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S. Brief report: combinedchemical treatment enables Oct4-induced reprogramming from mouseembryonic fibroblasts. Stem Cells. 2011 Mar;29(3):549-53. doi:10.1002/stem.594. PubMed PMID: 21425417.
7: Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y. Efficient feeder-freeepisomal reprogramming with small molecules. PLoS One. 2011 Mar1;6(3):e17557. doi: 10.1371/journal.pone.0017557. PubMed PMID: 21390254;PubMed Central PMCID: PMC3046978.
8: Furutani Y, Umemoto T, Murakami M, Matsui T, Funaba M. Role ofendogenous TGF-β family in myogenic differentiation of C2C12 cells. JCell Biochem. 2011 Feb;112(2):614-24. doi: 10.1002/jcb.22953. PubMedPMID: 21268083.
9: Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S. Combined ChemicalTreatment Enables Oct4-Induced Reprogramming from Mouse EmbryonicFibroblasts. Stem Cells. 2011 Jan 7. [Epub ahead of print] PubMed PMID:21218442.
10: Kawano K, Maitani Y. [Tumor permeability of nanocarriers observed bydynamic contrast-enhanced magnetic resonance imaging]. Yakugaku Zasshi.2010 Dec;130(12):1679-85. Review. Japanese. PubMed PMID: 21139395.
11: Taniguchi Y, Kawano K, Minowa T, Sugino T, Shimojo Y, Maitani Y.Enhanced antitumor efficacy of folate-linked liposomal doxorubicin withTGF-β type I receptor inhibitor. Cancer Sci. 2010 Oct;101(10):2207-13.doi: 10.1111/j.1349-7006.2010.01646.x. Epub 2010 Jul 1. PubMed PMID:20608940.
12: Minowa T, Kawano K, Kuribayashi H, Shiraishi K, Sugino T, Hattori Y,Yokoyama M, Maitani Y. Increase in tumour permeability followingTGF-beta type I receptor-inhibitor treatment observed by dynamiccontrast-enhanced MRI. Br J Cancer. 2009 Dec 1;101(11):1884-90. doi:10.1038/sj.bjc.6605367. Epub 2009 Nov 3. PubMed PMID: 19888220; PubMedCentral PMCID: PMC2788254.
13: Hoberg M, Rudert M, Pap T, Klein G, Gay S, Aicher WK. Attachment tolaminin-111 facilitates transforming growth factor beta-inducedexpression of matrix metalloproteinase-3 in synovial fibroblasts. AnnRheum Dis. 2007 Apr;66(4):446-51. Epub 2006 Nov 23. PubMed PMID:17124250; PubMed Central PMCID: PMC1856036.
14: Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K, NodeM, Imamura T. The ALK-5 inhibitor A-83-01 inhibits Smad signaling andepithelial-to-mesenchymal transition by transforming growth factor-beta.Cancer Sci. 2005 Nov;96(11):791-800. PubMed PMID: 16271073.